如图,四棱锥中,⊥底面,底面为梯形,,,且,点是棱上的动点.(Ⅰ)当∥平面时,确定点在棱上的位置;(Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.
已知y = f (x)是定义在[–1,1]上的奇函数,x∈[0,1]时,f (x) =. (1)求x∈[–1,0)时,y = f (x)解析式,并求y = f (x)在[0,1]上的最大值. (2)解不等式f (x)>.
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作l的垂线,垂足为点Q,且· (I)求动点P的轨迹C的方程; (II)过点F的直线交轨迹C于A、B两点,交直线l于点M. (1)已知的值; (2)求||·||的最小值.
(本小题满分12分) 数列{an}的前N项和为Sn,a1=1,an+1=2Sn (n∈N*). (I)求数列{an}的通项an; (II)求数列{nan}的前n项和T.
(本小题满分12分) 设函数f(x)=tx2+2t2x+t-1(x∈R,t>0). (I)求f (x)的最小值h(t); (II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点. (I)求证:AB1⊥平面A1BD; (II)求二面角A-A1D-B的大小.