(12分)已知各项均为正数的数列的前n项和为,且成等差数列. (1)求数列的通项公式;(2)若,设求数列的前项和.
(本小题满分12分) 在中,角的对边分别为,,. (1) 求及的值. (2) 若,求.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (Ⅰ)当时,求函数的定义域; (Ⅱ)若关于的不等式的解集是,求的取值范围.
已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合. 直线的参数方程为:(t为参数),曲线的极坐标方程为:. (Ⅰ)写出的直角坐标方程,并指出是什么曲线; (Ⅱ)设直线与曲线相交于、两点,求值.
已知函数 (Ⅰ)当时,求的单调区间; (Ⅱ)若对任意, 恒成立,求实数的取值范围.
已知椭圆的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)过点且斜率为的直线与交于、两点,是点关于轴的对称点,证明:三点共线.