(本小题满分14分)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(2)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.
(本大题共14分) 已知函数(为实常数)的两个极值点为,且满足 (1)求的取值范围; (2)比较与的大小.
本大题共13分) 三个求职者到某公司应聘,该公司为他们提供了A,B,C,D四个岗位,每人从中任选一个岗位。 (1)求恰有两个岗位没有被选的概率; (2)设选择A岗位的人数为,求的分布列及数学期望。
(本大题共12分) 过点P(1,0)作直线交椭圆于A,B两点,若,求直线的方程。
(本大题共12分) 已知 (1)求;(2).
(本大题共12分) 如图为正方体,一只青蛙开始在顶点A处,它每次可随意跳到相邻三顶点之一,若在五次内跳到点,则停止跳动;若5次内不能跳到点,跳完五次也停止跳动,求: (1)5次以内能到点的跳法有多少种? (2)从开始到停止,可能出现的跳法有多少种?