(本小题满分16分)如图是东西走向的一水管,在水管北侧有两个半径都是10m的圆形蓄水池(分别为蓄水池的圆心),经测量,点,到水管的距离分别为55m和25m,m.以所在直线为轴,过点且与垂直的直线为轴,建立如图所示的直角坐标系(O为坐标原点).(1)求圆的方程;(2)计划在水管上的点处安装一接口,并从接口出发铺设两条水管,将中的水引到两个蓄水池中,问点到点O的距离为多少时,铺设的两条水管总长度最小?并求出该最小值.
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=. (1)求an与bn. (2)证明:≤++…+<.
设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列为{xn}. (1)求数列{xn}的通项公式. (2)设{xn}的前n项和为Sn,求sinSn.
已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3·a4=117,a2+a5=22. (1)求数列{an}的通项公式an. (2)若数列{bn}是等差数列,且bn=,求非零常数c.
知{an}是首项为-2的等比数列,Sn是其前n项和,且S3,S2,S4成等差数列, (1)求数列{an}的通项公式. (2)若bn=log2|an|,求数列{}的前n项和Tn.
已知数列{an}的首项为a1=1,其前n项和为Sn,且对任意正整数n有n,an,Sn成等差数列. (1)求证:数列{Sn+n+2}成等比数列. (2)求数列{an}的通项公式.