(本小题满分16分)如图是东西走向的一水管,在水管北侧有两个半径都是10m的圆形蓄水池(分别为蓄水池的圆心),经测量,点,到水管的距离分别为55m和25m,m.以所在直线为轴,过点且与垂直的直线为轴,建立如图所示的直角坐标系(O为坐标原点).(1)求圆的方程;(2)计划在水管上的点处安装一接口,并从接口出发铺设两条水管,将中的水引到两个蓄水池中,问点到点O的距离为多少时,铺设的两条水管总长度最小?并求出该最小值.
已知函数 (1)若f(x)的定义域是R,求实数a的取值范围及f(x)的值域; (2)若f(x)的值域是R,求实数a的取值范围及f(x)的定义域.
已知,,数列满足,,. (I)求证:数列是等比数列; (II)若对任意恒成立,求实数的取值范围.
如图所示,已知圆为圆上一动点,点P在AM上,点N在CM上,且满足的轨迹为曲线E. (I)求曲线E的方程; (II)过点A且倾斜角是45°的直线l交曲线E于两点H、Q,求|HQ|.
四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD底面ABCD,当的值等于多少时,能使PBAC?并给出证明.
已知锐角中,三个内角为A、B、C,两向量,。若与是共线向量. (I)求的大小; (II)求函数取最大值时,的大小.