如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2).设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
(本小题满分12分)如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.
已知a>0,函数.⑴设曲线在点(1,f(1))处的切线为,若截圆的弦长为2,求a;⑵求函数f(x)的单调区间;⑶求函数f(x)在[0,1]上的最小值.
一条斜率为1的直线与离心率e=的椭圆C:交于P、Q两点,直线与y轴交于点R,且,求直线和椭圆C的方程;
已知函数的导函数,数列{}的前n项和为,点(n,)均在函数的图象上.若=(+3)⑴当n≥2时,试比较与的大小;⑵记试证
如图,椭圆C:焦点在轴上,左、右顶点分别为A1、A,上顶点为B.抛物线C1、C:分别以A、B为焦点,其顶点均为坐标原点O,C1与C2相交于直线上一点P.⑴求椭圆C及抛物线C1、C2的方程;⑵若动直线与直线OP垂直,且与椭圆C交于不同两点M、N,已知点Q(,0),求的最小值.