如图,椭圆C:焦点在轴上,左、右顶点分别为A1、A,上顶点为B.抛物线C1、C:分别以A、B为焦点,其顶点均为坐标原点O,C1与C2相交于直线上一点P.⑴求椭圆C及抛物线C1、C2的方程;⑵若动直线与直线OP垂直,且与椭圆C交于不同两点M、N,已知点Q(,0),求的最小值.
解关于不等式:
已知函数. (1)当时,求的单调区间; (2)若函数在上无零点,求的最小值。
如图,椭圆的左顶点为,是椭圆上异于点的任意一点,点与点关于点对称. (1)若点的坐标为,求的值; (2)若椭圆上存在点,使得,求的取值范围.
数列的各项都是正数,前项和为,且对任意,都有. (1)求证:;(2)求数列的通项公式。
如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示. (1)证明:平面; (2)线段上是否存在点,使与所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.