如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.(1)若∠F1AB=90°,求椭圆的离心率;(2)若=2,·=,求椭圆的方程.
设复数,试求实数m取何值时 (1)Z是实数; (2)Z是纯虚数; (3)Z对应的点位于复平面的第一象限
(本小题满分10分) 设函数. (I)若当时,不等式恒成立,求实数m的取值范围; (II)若关于x的方程在区间[0,2]上恰好有两个相异的实根,求实数的取值范围.
(本小题满分10分) (I)两数的最大公约数为400,则两数的公约数的个数是; (II)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、上各装一个灯泡.要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答).
(本小题满分10分) 已知函数. (I)求的单调区间; (II)设,若对任意,均存在,使得,求的取值范围.
(本小题满分10分) 在二项式的展开式中,前三项系数的绝对值成等差数列. (I)求的值; (II)求展开式的常数项.