(本小题满分16分)记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+,S3=12+.(1)求数列{an}的通项公式an及前n项和Sn;(2)记bn=an-,若自然数n1,n2,…,nk,…满足1≤n1<n2<…<nk<…,并且,,…,,…成等比数列,其中n1=1,n2=3,求nk(用k表示);(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.
已知函数 (1)求不等式的解集; (2)若关于的不等式恒成立,求实数的取值范围.
设函数 (1)设,,证明:在区间内存在唯一的零点; (2)设,若对任意,有,求的取值范围.
某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度元计费,每月用电超过度时,超过部分按每度元计费,每月用电超过度时,超过部分按每度元计费. (1)设每月用电度,应交电费元,写出关于的函数; (2)已知小王家第一季度缴费情况如下:
问:小王家第一季度共用了多少度电?
已知函数 (1)判断函数在上的单调性,并用定义加以证明; (2)若对任意,总存在,使得成立,求实数的取值范围.
已知函数 (1)令,求关于的函数关系式及的取值范围; (2)求函数的值域,并求函数取得最小值时的的值.