如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点.(1)求证:;(2)求二面角的平面角的正弦值.
已知正项数列满足: (1)求的范围,使得恒成立; (2)若,证明: (3)若,证明:
已知函数,其中. (1)若是的极值点,求的值; (2)求的单调区间; (3)若在上的最大值是,求的取值范围.
如图,已知离心率为的椭圆过点M(2,1),O为坐标原点,平行于OM的直线交椭圆C于不同的两点A、B. (1)求椭圆C的方程. (2)证明:直线MA、MB与x轴围成一个等腰三角形.
如图,在直三棱柱中,,,是的中点. (1)求证:∥平面; (2)求二面角的余弦值; (3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.
盒中装有个零件,其中个是使用过的,另外个未经使用. (1)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求次抽取中恰有次抽到使用过的零件的概率; (2)从盒中随机抽取个零件,使用后放回盒中,记此时盒中使用过的零件个数为,求的分布列和数学期望.