如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点.(1)求证:;(2)求二面角的平面角的正弦值.
已知条件p:A={x|2a≤x≤a2+1},条件q:B={x|x2-3(a+1)x+2(3a+1)≤0}.若条件p是条件q的充分条件,求实数a的取值范围.
如图,在空间四边形SABC中,AC、BS为其对角线,O为△ABC的重心, 试证:(1)(;(2).
设函数上两点,若,且P点的横坐标为. (Ⅰ)求P点的纵坐标; (Ⅱ)若求; (Ⅲ)记为数列的前n项和,若对一切都成立,试求a的取值范围.
设函数。 (Ⅰ)若时,函数取得极值,求函数的图像在处的切线方程; (Ⅱ)若函数在区间内不单调,求实数的取值范围。
已知=(cosα,sinα),=(cosβ,sinβ),与之间有关系|k+|=|-k|,其中k>0,(Ⅰ)用k表示; (Ⅱ)求·的最小值,并求此时与的夹角的大小。