本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列满足前项和为,.(1)若数列满足,试求数列前3项的和; (2)(理)若数列满足,试判断是否为等比数列,并说明理由; (文)若数列满足,,求证:是为等比数列; (3)当时,对任意,不等式都成立,求的取值范围.
圆锥的底面半径为5 cm,高为12 cm,当它的内接圆柱的底面半径为何值时,圆锥的内接圆柱全面积有最大值?最大值是多少?
如图,已知几何体的三视图(单位:cm). (Ⅰ)画出这个几何体的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积及体积; (Ⅲ)设异面直线、所成角为,求.
一个圆锥形容器和一个圆柱形容器,它们的轴截面尺寸如图所示,两容器内所盛液体的体积正好相等,且液面高度h正好相同,求h.
一个无盖的正方体盒子展开后的平面图如图所示,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC的度数是多少?
用刀切一个近似球体的西瓜,切下的较小部分的圆面直径为30 cm,高度为5 cm,该西瓜体积大约有多大?