(本小题14分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.(1)证明:DN//平面PMB;(2)证明:平面PMB平面PAD;(3)求点A到平面PMB的距离.
已知集合, (Ⅰ)若=5,求; (Ⅱ)若,求的取值范围.
已知平面向量, (Ⅰ)若,求的值; (Ⅱ)若,求的值.
已知半径为的圆的圆心在轴上,且与直线相切.圆心的横坐标是整数。 (1)求圆的方程; (2)设直线与圆相交于两点,求实数的取值范围; (3) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为. (1)求直线与圆相切的概率; (2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩,及这6位同学成绩的标准差; (2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.