.列方程解应用题。A、B两地相距80千米,一辆公共汽车从A地出发开往B地,2小时后,又从A地开来一辆小汽车,小汽车的速度是公共汽车的3倍。结果小汽车比公共汽车早到40分钟到达B地。求两种车的速度。
如图,长沙九龙仓国际金融中心主楼 BC 高达 452 m ,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼 DE 高 340 m ,为了测量高楼 BC 上发射塔 AB 的高度,在楼 DE 底端 D 点测得 A 的仰角为 α , sin α = 24 25 ,在顶端 E 点测得 A 的仰角为 45 ° ,求发射塔 AB 的高度.
为了取得扶贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为 A 、 B 、 C 、 D 四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:
(1)求样本容量;
(2)补全条形图,并填空: n = ;
(3)若全市有5000人参加了本次测试,估计本次测试成绩为 A 级的人数为多少?
如图,在平面直角坐标系中,抛物线 y = a x 2 + 2 x + c 与 x 轴交于 A ( − 1 , 0 ) , B ( 3 , 0 ) 两点,与 y 轴交于点 C ,点 D 是该抛物线的顶点.
(1)求抛物线的解析式和直线 AC 的解析式;
(2)请在 y 轴上找一点 M ,使 ΔBDM 的周长最小,求出点 M 的坐标;
(3)试探究:在拋物线上是否存在点 P ,使以点 A , P , C 为顶点, AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点 P 的坐标;若不存在,请说明理由.
已知:如图,在四边形 ABCD 中, AD / / BC ,点 E 为 CD 边上一点, AE 与 BE 分别为 ∠ DAB 和 ∠ CBA 的平分线.
(1)请你添加一个适当的条件 ,使得四边形 ABCD 是平行四边形,并证明你的结论;
(2)作线段 AB 的垂直平分线交 AB 于点 O ,并以 AB 为直径作 ⊙ O (要求:尺规作图,保留作图痕迹,不写作法);
(3)在(2)的条件下, ⊙ O 交边 AD 于点 F ,连接 BF ,交 AE 于点 G ,若 AE = 4 , sin ∠ AGF = 4 5 ,求 ⊙ O 的半径.
已知:如图, AB 是 ⊙ O 的直径, AB = 4 ,点 F , C 是 ⊙ O 上两点,连接 AC , AF , OC ,弦 AC 平分 ∠ FAB , ∠ BOC = 60 ° ,过点 C 作 CD ⊥ AF 交 AF 的延长线于点 D ,垂足为点 D .
(1)求扇形 OBC 的面积(结果保留 π ) ;
(2)求证: CD 是 ⊙ O 的切线.