某市5000名学生参加高中数学毕业会考,得分均在60分以上,现从中随机抽取一个容量为500的样本,制成如图a所示的频率分布直方图.(1)由频率分布直方图可知本次会考的数学平均分为81分,请估计该市得分在区间的人数;(2)如图b所示茎叶图是某班男女各4名学生的得分情况,现用简单随机抽样的方法,从这8名学生中,抽取男、女生各一人,求女生得分不低于男生得分的概率.
(本小题满分10分)选修4-5:不等式选讲 已知函数f(x)=|x-1|(I )解关于x;的不等式f(x)+x2-1>0;(II )若f(x)=-|x+3|m,f(x)<g(x)的解集非空,求实数m的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为:(I)求曲线C1的普通方程;(II)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值.
(本小题满分10分)选修4-1几何证明选讲如图,AB是O的直径,BE为圆0的切线,点c为o 上不同于A、B的一点,AD为的平分线,且分别与BC 交于H,与O交于D,与BE交于E,连结BD、CD.(I )求证:BD平分(II)求证:AH.BH=AE.HC
.(本小题满分12分)已知函數f(x)=ln+mx2(m∈R)(I)求函数f(x)的单调区间;(II)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0, 为f(x)的导函数,求证:(III)求证
(本小题满分12分)已知直线l1:4x:-3y+6=0和直线l2x=-p/2:.若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.(I )求抛物线C的方程;(II)若以拋物线上任意一点M为切点的直线l与直线l2交于点N,试问在x轴上是否存 在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标,若不存在,请说明理由.