某市5000名学生参加高中数学毕业会考,得分均在60分以上,现从中随机抽取一个容量为500的样本,制成如图a所示的频率分布直方图.(1)由频率分布直方图可知本次会考的数学平均分为81分,请估计该市得分在区间的人数;(2)如图b所示茎叶图是某班男女各4名学生的得分情况,现用简单随机抽样的方法,从这8名学生中,抽取男、女生各一人,求女生得分不低于男生得分的概率.
(1)写出数列的前3项; (2)求数列的通项公式(写出推证过程); (3)设,是数列的前项和,求使得对所有nN+都成立的最小正整数的值。
(满分13分) 深圳某商场为使销售空调和冰箱获得的总利润达到最大,对即将出售的空调和冰箱相关数据进行调查,得出下表:
问:该商场怎样确定空调或冰箱的月供应量,才能使总利润最大?
(满分13分)已知数列中,, (1)判断数列是否为等比数列?并说明理由; (2)求
(满分14分)已知不等式的解集为A,不等式的解集为B。 (1)求A∩B; (2)若不等式的解集为A∩B,求不等式的解集。
(满分13分)已知数列满足(),它的前项和为,且,。求数列的前项和的最小值.