右图为一简单组合体,其底面为正方形,平面,,且(1)求证:平面;(2)求与平面所成角的大小.
(本小题共13分)将这个数随机排成一列,得到的一列数称为的一个排列.定义为排列的波动强度. (Ⅰ)当时,写出排列的所有可能情况及所对应的波动强度; (Ⅱ)当时,求的最大值,并指出所对应的一个排列.
(本小题满分14分)已知椭圆:的上顶点为,两个焦点为、,为正三角形且周长为6. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知圆:,若直线与椭圆只有一个公共点,且直线与圆相切于点;求的最大值.
(本小题满分13分)已知函数,其中为常数,且. (Ⅰ)若曲线在点(1,)处的切线与直线垂直,求的值; (Ⅱ)若函数在区间[1,2]上的最小值的表达式.
(本小题满分13分)从含有两件正品和一件次品的3件产品中,每次任取1件 (Ⅰ)每次取出后不放回,连续取两次,求取出的产品中恰有一件次品的概率; (Ⅱ)每次取出后放回,连续取两次,求取出的产品中恰有一件次品的概率.
(本小题满分14分) 如图,在四棱锥中,底面为矩形,平面平面,,,为的中点,求证: (Ⅰ)平面; (Ⅱ)平面平面; (Ⅲ)求四棱锥的体积.