数列的前项和记为,,点在直线上,.(Ⅰ)当实数为何值时,数列是等比数列?(Ⅱ)在(Ⅰ)的结论下,设,是数列的前项和,求的值.
【2015高考湖南,理21】已知,函数,记为的从小到大的第个极值点,证明:(1)数列是等比数列(2)若,则对一切,恒成立.
【2015高考广东,理19】设,函数.(1)求的单调区间 ;(2)证明:在上仅有一个零点;(3)若曲线在点处的切线与轴平行,且在点处的切线与直线平行(是坐标原点),证明:.
【2015高考北京,理18】已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求证:当时,;(Ⅲ)设实数使得对恒成立,求的最大值.
【2015高考新课标1,理21】已知函数f(x)=. (Ⅰ)当a为何值时,x轴为曲线 的切线; (Ⅱ)用 表示m,n中的最小值,设函数 ,讨论h(x)零点的个数.
【2015高考湖北,理22】已知数列的各项均为正数,,为自然对数的底数.(Ⅰ)求函数的单调区间,并比较与的大小;(Ⅱ)计算,,,由此推测计算的公式,并给出证明;(Ⅲ)令,数列,的前项和分别记为,, 证明:.