【2015高考北京,理18】已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求证:当时,;(Ⅲ)设实数使得对恒成立,求的最大值.
在四棱锥中, ,,点是线段上的一点,且,.(1)证明:面面; (2)求直线与平面所成角的正弦值.
如图,海上有两个小岛相距10,船O将保持观望A岛和B岛所成的视角为,现从船O上派下一只小艇沿方向驶至处进行作业,且.设。(1)若,求出的取值;(2)用分别表示和,并求出的取值范围.
集合,,若命题,命题,且是必要不充分条件,求实数的取值范围。
设函数,.(1)求的极大值;(2)求证:(3)当方程有唯一解时,试探究函数与的图象在其公共点处是否存在公切线,若存在.研究的值的个数;若不存在,请说明理由.
已知数列中,且点在直线上。(1)求数列的通项公式;(2)若函数求函数的最小值;(3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。