(本大题满分12分)在△中,分别为内角的对边,且 (1)求(2)若,求
四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠ABC=45°,AB=2,BC=2,SA=SB=. (Ⅰ)求证:SA⊥BC; (Ⅱ)求直线SD与平面SAB所成角的正弦值.
已知数列{}中,为其前n项和,且,当时,恒有(为常数). (Ⅰ)求常数的值; (Ⅱ)当时,求数列{}的通项公式; (Ⅲ)设,数列的前n项和为,求证:.
从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率. (Ⅰ)求从该批产品中任取1件是二等品的概率; (Ⅱ)若该批产品共20件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求X的分布列与期望.
(本大题满分10分)选修4-5:不等式选讲 已知函数 (Ⅰ)若的解集为,求实数的值; (Ⅱ)当且时,解关于的不等式
(本小题满分10分) 选修4-4:坐标系与参数方程 在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为 (Ⅰ)将圆的极坐标方程化为直角坐标方程; (Ⅱ)过点作斜率为1直线与圆交于两点,试求的值.