近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008 年 同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为,则关于的方程为( )
阅读材料:例:说明代数式 的几何意义,并求它的最小值.解:,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3, 即原式的最小值为3.根据以上阅读材料,解答下列问题:(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B 的距离之和.(填写点B的坐标)(2)代数式 的最小值.
(本题10分)如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,过点A的双曲线的一支在第一象限交梯形对角线OC于点D,交边BC于点E.(1)填空:双曲线的另一支在第 象限,的取值范围是 ;(2)若点C的坐标为(1,1),请用含有的式子表示阴影部分的面积S.并回答:当点E在什么位置时,阴影部分面积S最小?(3)若,,求双曲线的解析式.
(本题10分)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=时,求线段AB的长.
(本题6分)已知关于x的方程有两个实数根、.(1)求k的取值范围;(2)若,求k的值.
(本题6分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?