“5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象.(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);(2)写出客车和出租车行驶的速度分别是多少?(3)试求出出租车出发后多长时间赶上客车?
为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形统计图补充完整,并计算扇形统计图中书法部分的圆心角的度数;(3)如果该校共有名学生参加这个课外兴趣小组,面每位教师最多只能辅导本组的名学生,估计每个兴趣小组至少需要准备多少名教师.
张师傅根据某直三棱柱零件,按1:1的比例画出准确的三视图如下:已知△EFG中,EF="4" cm,∠EFG=45°,FG="10" cm,AD="12" cm.(1)求AB的长;(2)直接写出这个直三棱柱的体积.
如图1,抛物线与x轴交于B(3,0) 、C(8.0)两点,抛物线另有一点A在第一象限内,连接AO、AC,且AO=AC.求抛物线的解析式;将△OAC绕x轴旋转一周,求所得旋转体的表面积;如图2,将△OAC沿x轴翻折后得△ODC,设垂直于x轴的直线l:x=n与(1)中所求的抛物线交于点M,与CD交于点N,若直线l 沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD。如图1,以AB为边在△ABC外作等腰△ABE,其中AB=AE,,试证明BD=CE;如图2,若∠ABC=30°,△ACD是等边三角形,AB=3,BC=4,求BD的长;如图3,若∠ACB为锐角,作AH⊥BC于H,当BD2=4AH2+BC2时,问∠DAC与∠ABC有怎样的关系,直接写出结论(不需要证明)。
现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为0.6万元,使用B型车厢每节费用为0.8万元.设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?在上述方案中,哪个方案运费最省?最少运费为多少元?