从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例.
已知数列满足,,等比数列的首项为2,公比为. (Ⅰ)若,问等于数列中的第几项? (Ⅱ)数列和的前项和分别记为和,的最大值为,当时,试比较与的大小
对于数列,定义“变换”:将数列变换成数列,其中,且.这种“变换”记作.继续对数列进行“变换”,得到数列,依此类推,当得到的数列各项均为时变换结束. (Ⅰ)试问经过不断的“变换”能否结束?若能,请依次写出经过“变换”得到的各数列;若不能,说明理由; (Ⅱ)设,.若,且的各项之和为. (ⅰ)求,; (ⅱ)若数列再经过次“变换”得到的数列各项之和最小,求的最小值,并说明理由.
如图,抛物线与轴交于两点,点在抛物线上(点在第一象限),∥.记,梯形面积为. (Ⅰ)求面积以为自变量的函数式; (Ⅱ)若,其中为常数,且,求的最大值.
已知椭圆的离心率为,一个焦点为. (Ⅰ)求椭圆的方程; (Ⅱ)设直线交椭圆于,两点,若点,都在以点为圆心的圆上,求的值.
如图,矩形中,,.,分别在线段和上,∥,将矩形沿折起.记折起后的矩形为,且平面平面. (Ⅰ)求证:∥平面; (Ⅱ)若,求证:; (Ⅲ)求四面体体积的最大值.