从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例.
(本小题满分14分) 设数列满足. (Ⅰ)求; (Ⅱ)设,数列的前n项和为.求证:.
(本小题满分15分) 已知椭圆:()的右焦点为,且椭圆上一点到其两焦点的距离之和为. (Ⅰ)求椭圆的标准方程; (Ⅱ)设直线与椭圆交于不同两点,且.若点满足,求的值.
(本小题满分15分) 设抛物线:的焦点为,过且斜率为的直线交抛物线于,两点,且. (Ⅰ)求抛物线的标准方程; (Ⅱ)若,为坐标原点,求的面积.
(本小题满分15分) 对于函数,若存在,使成立,则称为的一个不动点. 设函数(). (Ⅰ)当,时,求的不动点; (Ⅱ)设函数的对称轴为直线,若为的不动点,且,求证:.
(本小题满分15分) 等差数列中,,. (Ⅰ)求数列的通项公式; (Ⅱ)设,求.