(选修4—2:矩阵与变换)已知,,设曲线在矩阵对应的变换作用下得到曲线,求方程
如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,点B的坐标为(2,0),(1)若动点M满足,求点M的轨迹C;(2)若过点B的直线l′(斜率不等于零)与(1)中的轨迹C交于不同的两点E,F(E在B,F之间)试求△OBE与△OBF面积之比的取值范围.
如图,已知矩形ABCD,PA⊥平面ABCD于A,M,N分别为AB,PC的中点(1)求证:MN⊥AB;(2)若平面PDC与平面ABCD所成的二面角为θ,能否确定θ,使直线MN是异面直线AB与PC的公垂线?若能确定,求出的值;若不能确定,说明理由.
某工厂在试验阶段大量生产一种零件.这种零件有A,B两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为5/12,至少一项技术指标达标的概率为11/12.按质量检验规定:两项技术指标都达标的零件为合格品.(1)求一个零件经过检测为合格品的概率是多少?(2)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?(3)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求Eξ与Dξ.
函数f(x)=(sinωx+cosωx)cosωx-0.5(ω>0)的最小正周期为4π,(1)求f(x)的单调递增区间;(2)在∆ABC中,角A,B,C的对边分别是a,b,c,满足(2a-c)cosB=bcosC,求角B的值,并求函数f(A)的取值范围
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分其中①6分、②2分。设抛物线的焦点为,过且垂直于轴的直线与抛物线交于两点,已知.(1)求抛物线的方程;(2)设,过点作方向向量为的直线与抛物线相交于两点,求使为钝角时实数的取值范围;(3)①对给定的定点,过作直线与抛物线相交于两点,问是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由。②对,过作直线与抛物线相交于两点,问是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?(只要求写出结论,不需用证明)