某工厂在试验阶段大量生产一种零件.这种零件有A,B两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为5/12,至少一项技术指标达标的概率为11/12.按质量检验规定:两项技术指标都达标的零件为合格品.(1)求一个零件经过检测为合格品的概率是多少?(2)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?(3)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求Eξ与Dξ.
已知=(1+,1),=(1,)(,∈R),且·. (Ⅰ)求函数的最小正周期; (Ⅱ)若的最大值是4,求的值,并说明此时的图象可由的图象经过怎样的变换而得到.
已知中,、、是三个内角、、的对边,关于的不等式的解集是空集. (1)求角的最大值; (2)若,的面积,求当角取最大值时的值.
已知A、B、C为的三个内角,向量,且 (1)求的值; (2)求C的最大值,并判断此时的形状.
设函数f(x)=a·b,其中向量a=(cos,sin),(x∈R),向量b=(cosj,sinj) (Ⅰ)求j的值; (Ⅱ)若函数y=1+sin的图象按向量c=(m,n)(| m |<p)平移可得到函数y=f(x)的图象,求向量c.
已知函数 (1)求函数的最小正周期及单调增区间; (2)若函数的图象按向量平移后得到函数的图象,求的解析式.