如图,四棱锥中,底面是平行四边形,,平面,,,是的中点.(1)求证:平面; (2)若以为坐标原点,射线、、分别是轴、轴、轴的正半轴,建立空间直角坐标系,已经计算得是平面的法向量,求平面与平面所成锐二面角的余弦值.
在平面直角坐标系中,已知点,动点在轴上的正射影为点,且满足直线. (Ⅰ)求动点M的轨迹C的方程; (Ⅱ)当时,求直线的方程.
已知椭圆上的点到左右两焦点的距离之和为,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)过右焦点的直线交椭圆于两点. (1)若轴上一点满足,求直线斜率的值; (2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
设函数,若函数在处与直线相切, (1)求实数,的值; (2)求函数上的最大值.
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线与曲线交于点(点在第一象限). (Ⅰ)求曲线的方程; (Ⅱ)已知为曲线的左顶点,平行于的直线与曲线相交于两点.判断直线是否关于直线对称,并说明理由.
已知函数,曲线在点处的切线方程为. (1)求的值; (2)求在上的最大值.