已知直线经过椭圆()的左顶点和上顶点.椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线、与直线分别交于、两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)求线段长度的最小值;(Ⅲ)当线段的长度最小时,椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数;若不存在,请说明理由.
已知函数 , (1)求函数f(x)的定义域; (2)判断其奇偶性
设函数 (1)当时,求函数的定义域; (2)若函数的定义域为R,试求的取值范围。
已知曲线C的极坐标方程是,设直线的参数方程是(为参数)。 (1)将曲线C的极坐标方程转化为直角坐标方程; (2)设直线与轴的交点是M,N为曲线C上一动点,求|MN|的最大值。
已知函数,数列满足 (1)求证:当时,不等式恒成立; (2)设为数列的前项和,求证:
设数列的前项和为,且对任意的,都有,. (1)求,的值; (2)求数列的通项公式; (3)证明:.