(本小题满分14分)已知点、,()是曲线C上的两点,点、关于轴对称,直线、分别交轴于点和点,(Ⅰ)用、、、分别表示和; (Ⅱ)某同学发现,当曲线C的方程为:时,是一个定值与点、、的位置无关;请你试探究当曲线C的方程为:时, 的值是否也与点M、N、P的位置无关;(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为时,探究与经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).
.已知函数,当时,的极大值为7;当时,有极小值.求(1)的值 ;(2)函数的极小值.
已知直线经过椭圆的左顶点和上顶点椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点,如图所示。(1)求椭圆的方程; (2)求线段的长度的最小值;(3)当线段的长度的最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,请说明理由。
.(本小题满分12分)函数的图像如图所示。(1)若函数在处的切线方程为求函数的解析式(2)在(1)的条件下,是否存在实数,使得的图像与的图像有且只有三个不同的交点?若存在,求出的取值范围;若不存在,说明理由。
(本小题满分12分)如图,四棱椎P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是300,点F是PB的中点,点E在边BC上移动。(1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(2)证明:无论点E在边BC的何处,都有AF⊥PE;(3)求当BE的长为多少时,二面角P-DE-A的大小为450。
(本小题满分12分)在数列中,已知且。(1)记证明:数列是等差数列,并求数列的通项公式;(2)设求的值。