(本小题满分12分)如图,四棱椎P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是300,点F是PB的中点,点E在边BC上移动。(1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(2)证明:无论点E在边BC的何处,都有AF⊥PE;(3)求当BE的长为多少时,二面角P-DE-A的大小为450。
已知分别是空间四边形的边上的点, 且四边形是平行四边形,求证:平面,平面.
如图ABCD—A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点. (1)求三棱锥D1—DBC的体积; (2)证明BD1∥平面C1DE; (3)求面C1DE与面CDE所成二面角的正切值.
如图,已知ABCD是矩形,E是以CD为直径的半圆周上一点,且面CDE⊥面ABCD. 求证:CE⊥平面ADE.
正方体ABCD—A1B1C1D1中,E、F、G分别是棱DA、DC、DD1的中点,试找出过正方体的三个顶点且与平面EFG平行的平面,并证明.
如图,已知三棱锥P-ABC中,PA、PB、PC与底面ABC成相等的角,∠CAB=90°,AC=AB,D为BC的中点,E点在PB上,PC∥截面EAD. (1)求证:平面PBC⊥底面ABC. (2)若AB=PB,求AE与底面ABC所成角的正弦值.