(本小题满分12分)已知关于的一元二次函数(Ⅰ)设集合和,分别从集合和中随机取一个数作为和,求函数在区间[上是增函数的概率;(Ⅱ)设点是区域内的随机点,记有两个零点,其中一个大于,另一个小于,求事件发生的概率.
如图,几何体中,四边形为平行四边形,且面面,,且,为中点. (Ⅰ)证明:平面; (Ⅱ)求直线与底面所成角的正弦值.
△ABC的三个顶点A(-3,0),B(2,1),C(-2,3).求: (Ⅰ)BC边上中线AD所在直线的方程; (Ⅱ)BC边上高线AH所在直线的方程.
某几何体的三视图及其尺寸如下,求该几何体的表面积和体积.
已知椭圆:=1(a>b>0)与双曲线有公共焦点,且离心率为.分别是椭圆的左、右顶点.点是椭圆上位于轴上方的动点.直线分别与直线:交于两点. (I)求椭圆的方程; (II)当线段的长度最小时,在椭圆上是否存在点,使得的面积为?若存在,求出的坐标,若不存在,请说明理由.
如右图,在平面直角坐标系中,已知“葫芦”曲线由圆弧与圆弧相接而成,两相接点均在直线上.圆弧所在圆的圆心是坐标原点,半径为;圆弧过点. (I)求圆弧的方程; (II)已知直线:与“葫芦”曲线交于两点.当时,求直线的方程.