(本小题满分12分)已知函数,,将函数向左平移个单位后得函数,设三角形三个角、、的对边分别为、、.(Ⅰ)若,,,求、的值;(Ⅱ)若且,,求的取值范围.
已知函数, (I)若,求函数的最大值和最小值,并写出相应的x的值; (II)设的内角、、的对边分别为、、,满足,且,求、的值
已知:等差数列{an}中,a3+a4=15,a2a5=54,公差d<0. (I)求数列{an}的通项公式an; (II)求数列的前n项和Sn的最大值及相应的n的值.
已知等比数列的公比为,是的前项和. (1)若,,求的值; (2)若,,有无最值?并说明理由; (3)设,若首项和都是正整数,满足不等式:,且对于任意正整数有成立,问:这样的数列有几个?
对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数. (1)求证:函数是上的“型”函数; (2)设是(1)中的“型”函数,若不等式对一切的恒成立,求实数的取值范围; (3)若函数是区间上的“型”函数,求实数和的值.
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数模型制定奖励方案,试用数学语言表述该公司对奖励函数模型的基本要求,并分析函数是否符合这个要求,并说明原因; (2)若该公司采用函数作为奖励函数模型,试确定最小的正整数的值.