(本题满分13分)已知函数.(Ⅰ) 求函数的最小值和最小正周期;(Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.
已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点.(1)求椭圆的方程;(2)求的取值范围;(3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.
已知函数,曲线在点处切线方程为.(1)求的值;(2)讨论的单调性,并求的极大值.
如图,三棱柱中,侧棱与底面垂直,,,分别是的中点(1)求证:∥平面;(2)求证:⊥平面;(3)求三棱锥的体积的体积.
已知等差数列前三项的和为,前三项的积为.(1)求等差数列的通项公式;(2)若,,成等比数列,求数列的前项和.
设函数=-sin(2x-).(1)求函数的最大值和最小值;(2)的内角的对边分别为,,f()=,若,求的面积.