((本题14分)定义:若函数在某一区间D上任取两个实数、,且,都有,则称函数在区间D上具有性质L。(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。(2)对于函数,判断其在区间上是否具有性质L?并用所给定义证明你的结论。(3)若函数在区间(0,1)上具有性质L,求实数的取值范围。
设平面向量,(1)证明;(2)当,求.
已知,且,求:(1)的值;(2)的值.
(本小题共13分)已知每项均是正整数的数列:,其中等于的项有个,设 ,.(Ⅰ)设数列,求;(Ⅱ)若数列满足,求函数的最小值.
(本小题共14分)已知椭圆 经过点其离心率为. (Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆相交于A、B两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点.求的取值范围.
(本小题共13分)已知函数,(Ⅰ)若,求函数的极值;(Ⅱ)设函数,求函数的单调区间;(Ⅲ)若在()上存在一点,使得成立,求的取值范围