如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
为了了解某中学学生的体能情况,体育组决定抽样三个年级部分学生进行跳绳测试,并将所得的数据整理后画出频率分布直方图(如下图).已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数是5. (1) 求第四小组的频率和参加这次测试的学生人数; (2) 在这次测试中,学生跳绳次数的中位数落在第几小组内? (3) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
是否存在角,,,使得 (1),(2)同时成立? 若存在,求出的值;若不存在,请说明理由.
已知,求:(1)的值;(2) 的值
已知,且,求的值.
已知角的终边经过点, (1)若,求的值; (2)若且,求实数的取值范围.