如图所示,一个简单的空间几何体的正视图和侧视图是边长为2的正三角形,俯视图轮廓为正方形,试描述该几何体的特征,并求该几何体的体积和表面积.
某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人.(1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名?(2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.
已知动直线与椭圆交于、两不同点,且△的面积=,其中为坐标原点.(1)证明和均为定值;(2)设线段的中点为,求的最大值;(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.
如图,已知正方体棱长为2,、、分别是、和的中点.(1)证明:面;(2)求二面角的余弦值.
已知椭圆的离心率为,直线与圆相切.(1)求椭圆的方程;(2)设直线与椭圆的交点为,求弦长.
设命题:实数满足,其中;命题:实数满足.(1)若,且为真,求实数的取值范围;(2)若是成立的必要不充分条件,求实数的取值范围.