如图,从A1(1,0,0)、A2(2,0,0)、B1(0,1,0)、B2(0,2,0)、C1(0,0,1)、C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;(2)求V的分布列及数学期望E(V).
已知函数⑴ 判断函数的单调性,并证明;⑵ 求函数的最大值和最小值
已知, (1)设集合,请用列举法表示集合B;(2)求和.
已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是(1)求双曲线C的方程;(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M, N,且线段MA的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。
已知函数.对于任意实数x恒有(1)求实数的最大值;(2)当最大时,函数有三个零点,求实数k的取值范围。
某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收人r(x)满足假定该产品产销平衡,根据上述统计规律求:(1)要使工厂有盈利,产品数量x应控制在什么范围?(2)工厂生产多少台产品时盈利最大?