一盒中有9个正品和3个次品零件,每次取一个零件,如果取出的是次品不再放回,求在取得正品前已取出的次品数X的概率分布,并求P.
已知的三内角与所对的边满足。(Ⅰ)求角的大小;(Ⅱ)如果用为长度的线段能围成以为斜边的直角三角形,试求实数的取值范围.
已知单位向量与的夹角是钝角,当时,的最小值为。(1)若,其中,求的最小值;(2)若满足,求的最大值.
已知,。(Ⅰ)当时,求和;(Ⅱ)若.求的取值范围.
已知焦点在轴上的椭圆,焦距为,长轴长为. (1)求椭圆的标准方程;(2)过点作两条互相垂直的射线,与椭圆交于两点.①证明:点到直线的距离为定值,并求出这个定值; ②求.
已知函数在处取得极值.(1)求实数的值;(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.