. (本小题满分12分)如图,设抛物线C1:的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在X轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动.(I)当m =1时,求椭圆C2的方程;(II)当的边长恰好是三个连续的自然数时,求面积的最大值.
已知函数. (I)将写成的形式,并求其图象对称中心的横坐标; (II)如果△ABC的三边a、b、c满足b2= a c,且边b所对的角为,试求的范围及此时函数的值域.
在东西方向直线延伸的湖岸上有一港口O,一艘机艇以40km/h的速度从O港出发,先沿东偏北的某个方向直线前进到达A处,然后改向正北方向航行,总共航行30分钟因机器出现故障而停在湖里的P处,由于营救人员不知该机艇的最初航向及何时改变的航向,故无法确定机艇停泊的准确位置,试划定一个最佳的弓形营救区域(用图形表示),并说明你的理由.
已知在轴上有一点列:,点分有向线段所成的比为,其中,为 常数,. (1)设,求数列的通项公式; (2)设,当变化时,求的取值范围.
在四棱锥中,,,底面, ,直线与底面成角,点分别是的中点. (1)求二面角的大小; (2)当的值为多少时,为直角三角形.
已知函数是定义在上的偶函数,当时,. (1)求当时的解析式; (2)试确定函数的单调区间,并证明你的结论; (3)若且,证明:.