在东西方向直线延伸的湖岸上有一港口O,一艘机艇以40km/h的速度从O港出发,先沿东偏北的某个方向直线前进到达A处,然后改向正北方向航行,总共航行30分钟因机器出现故障而停在湖里的P处,由于营救人员不知该机艇的最初航向及何时改变的航向,故无法确定机艇停泊的准确位置,试划定一个最佳的弓形营救区域(用图形表示),并说明你的理由.
(本小题满分14分) 已知函数与函数。 (I)若,的图像在点处有公共的切线,求实数的值; (II)设,求函数的值。
(本小题满分14分) 如图:在四棱锥中,底面ABCD是菱形,,平面ABCD,点M,N分别为BC,PA的中点,且 (I)证明:平面AMN; (II)求三棱锥N的体积; (III)在线段PD上是否存在一点E,使得平面ACE;若存在,求出PE的长,若不存在,说明理由。
(本小题满分13分) 某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O为圆心,且标有20元、10元、0元的三部分区域面积相等,假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券。(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券。)顾客甲和乙都到商场进行了消费,并按照规则参与了活动. (I)若顾客甲消费了128元,求他获得优惠券面额大于0元的概率? (II)若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率?
(本小题满分13分) 已知函数,(其中),其部分图像如图所示。 (I)求的解析式; (II)求函数在区间上的最大值及相应的值。
已知函数,在点处的切线方程为 (1)求函数的解析式; (2)若对于区间上任意两个自变量的值,都有,求实数的最小值。 (3)若过点,可作曲线的三条切线,求实数的取值范围。