在东西方向直线延伸的湖岸上有一港口O,一艘机艇以40km/h的速度从O港出发,先沿东偏北的某个方向直线前进到达A处,然后改向正北方向航行,总共航行30分钟因机器出现故障而停在湖里的P处,由于营救人员不知该机艇的最初航向及何时改变的航向,故无法确定机艇停泊的准确位置,试划定一个最佳的弓形营救区域(用图形表示),并说明你的理由.
设函数的图像为曲线 (1)若函数不是R上的单调函数,求实数的范围. (2)若过曲线外的点作曲线的切线恰有两条, (1)求的关系式. (2)若存在,使成立,求的取值范围.
给出一个正五棱柱. (1)用3种颜色给其10个顶点染色,要求各侧棱的两个端点不同色,有几种染色方案? (2)以其10个顶点为顶点的四面体共有几个?
对于数列:,实常数 (1)求,并猜想(2)证明你的猜想.
已知函数. (1)求在点处的切线方程; (2)求函数在上的最大值.
设实数数列的前项和,满足 (1)若成等比数列,求和; (2)求证:当时,.