双曲线的左、右焦点分别为、,为坐标原点,点在双曲线的右支上,点在双曲线左准线上,(Ⅰ)求双曲线的离心率;(Ⅱ)若此双曲线过,求双曲线的方程;(Ⅲ)在(Ⅱ)的条件下,、分别是双曲线的虚轴端点(在轴正半轴上),过的直线交双曲线、,,求直线的方程
设函数.若方程的根为和, 且. (1)求函数的解析式; (2)已知各项均不为零的数列满足: (为该数列前项和),求该数列的通项.
从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加. ⑴设年内(本年度为第一年)总收入为万元,旅游业总收入为万元,写出表达式 ⑵至少经过几年旅游业的总收入才能超过总投入?
某养渔场,据统计测量,第一年鱼的重量增长率为200﹪,以后每年的增长率为前一年的一半. ⑴饲养5年后,鱼重量预计是原来的多少倍? ⑵如因死亡等原因,每年约损失预计重量的10﹪,那么,经过几年后,鱼的总质量开始下降?
等差数列中,,其公差;数列是等比数列,,其公比 ⑴若,试比较与的大小,说明理由; ⑵若,试比较与的大小,说明理由.
数列的前项和为,点在直线. ⑴若数列成等比数列,求常数的值; ⑵求数列的通项公式; ⑶数列中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项; 若不存在,请说明理由.