如图,四边形ABCD是正方形,PB^平面ABCD,MA^平面ABCD, PB=AB=2MA. 求证:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.
已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<α<x<π. (1)若α=,求函数f(x)=b·c的最小值及相应x的值; (2)若a与b的夹角为,且a⊥c,求tan 2α的值.
已知函数f(x)=2sin(2ωx+φ)(ω>0,φ∈(0,π))的图象中相邻两条对称轴间的距离为,且点是它的一个对称中心. (1)求f(x)的表达式; (2)若f(ax)(a>0)在上是单调递减函数,求a的最大值.
已知函数f(x)=2sin xcos x+2cos2x-,x∈R. (1)求函数f(x)的最小正周期; (2)在锐角△ABC中,若f(A)=1,·=,求△ABC的面积.
设函数f(x)=+2cos2x. (1)求f(x)的最大值,并写出使f(x)取最大值时x的集合; (2)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(B+C)=,b+c=2,求a的最小值.
已知函数f(x)=2cos2-sin x. (1)求函数f(x)的最小正周期和值域; (2)若α为第二象限角,且f=,求的值.