一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为,记.(1)分别求出取得最大值和最小值时的概率; (2)求的分布列及数学期望.
如图,在平面四边形中,,(1)求的值;(2)求的长.
已知椭圆的右焦点为,且点在椭圆上,为坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围;(Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
设函数,的定义域均为,且是奇函数,是偶函数,,其中e为自然对数的底数. (Ⅰ)求,的解析式,并证明:当时,,;(Ⅱ)设,,证明:当时,.
如图所示,矩形中,,,,且,交于点.(Ⅰ)求证:;(Ⅱ)求三棱锥的体积.
设等差数列的公差为d,前n项和为,等比数列的公比为q.已知,,,.(Ⅰ)求数列,的通项公式;(Ⅱ)当时,记,求数列的前n项和.