已知椭圆的右焦点为,且点在椭圆上,为坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围;(Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
已知A、B为椭圆+=1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=a,AB中点到椭圆左准线的距离为,求该椭圆方程.
已知椭圆的对称轴为坐标轴,离心率,短轴长为,求椭圆的方程.
已知等差数列中,前5项和前10项的和分别为25和100。数列中,。 (1)求、; (2)设,求。
在△ABC中,若。 (1)求的值; (2)若,求和。
已知数列的各项均为正实数,且其前项和满足。(1)证明:数列是等差数列; (2)设,求数列的前项和。