(本题10分) 已知一次函数y=的图象与x轴交于点A.与轴交于点;二次函数图象与一次函数y=的图象交于、两点,与轴交于、两点且的坐标为 (1)求二次函数的解析式; (2)在轴上是否存在点P,使得△是直角三角形?若存在,求出所有的点,若不存在,请说明理由。
(2014年山东济南9分)如图1,有一组平行线∥∥∥,正方形ABCD的四个顶点分别在上,EG过点D且垂直于于点E,分别交于点F,G,. (1)AE= ,正方形ABCD的边长= ; (2)如图2,将∠AEG绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上. ①写出与的函数关系并给出证明; ②若,求菱形的边长.
(年辽宁营口14分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H. (1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG; (3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.
(年辽宁盘锦14分)已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF. (1)如图1,当点P与点G分别在线段BC与线段AD上时. ①求证:DG=2PC; ②求证:四边形PEFD是菱形; (2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.
(年辽宁锦州12分)(1)已知正方形ABCD中,对角线AC与BD相交于点O,如图①,将△BOC绕点O逆时针方向旋转得到△B′OC′,OC′与CD交于点M,OB′与BC交于点N,请猜想线段CM与BN的数量关系,并证明你的猜想. (2)如图②,将(1)中的△BOC绕点B逆时针旋转得到△BO′C′,连接AO′、DC′,请猜想线段AO′与DC′的数量关系,并证明你的猜想. (3)如图③,已知矩形ABCD和Rt△AEF有公共点A,且∠AEF=90°,∠EAF=∠DAC=α,连接DE、CF,请求出的值(用α的三角函数表示).
(年辽宁抚顺12分)已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D. (1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论; (2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由; (3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.