已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,且与轴相切,过原点作倾斜角为的直线,交于点,交圆于另一点,且(1)求圆和抛物线C的方程;(2)若为抛物线C上的动点,求的最小值;(3)过上的动点Q向圆作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
(本小题满分10分)解关于的不等式:.
(本题12分)已知函数,其中.(Ⅰ)若曲线在点处的切线方程为,求函数的解析式;(Ⅱ)讨论函数的单调性;(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
(本题10分)在直角坐标系xOy中,曲线C1的参数方程为 (α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2.(1)求C2的参数方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.
(本题10分)已知函数(1)判断函数的奇偶性(2)若在上为减函数,求的取值范围。
(本题10分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女,(1)若从甲校和乙校报名的教师中各选1名,求选出的两名教师性别相同的概率(2)若从报名的6名教师中任选2名,求选出的两名教师来自同一学校的概率