如图,正四棱柱中,,点在上且(1)证明:平面;(2)求二面角的余弦值.
在三棱锥A-BCD中,E、F分别是线段AD、BC上的点,满足,AB=CD=3,且AB与CD所成的角为60o,求EF的长.
矩形ABCD(AB≤BC)中,AC=2,沿对角线AC把它折成直二面角B-AC-D后,BD=,求AB、BC的长.
翰林汇
已知数列{an}满足a1=2,对于任意的n∈N,都有an>0,且(n+1)a+anan+1-na=0,又知数列{bn}:b1=2n-1+1(1)求数列{an}的通项an以及它的前n项和Sn;(2)求数列{bn}的前n项和Tn;(3)猜想Sn和Tn的大小关系,并说明理由.
如图,平行六面体ABCD-A'B'C'D'中,AC=2,BC=AA'=A'C=2,∠ABC=90°,点O是点A'在底面ABCD上的射影,且点O恰好落在AC上.(1)求侧棱AA'与底面ABCD所成角的大小;(2)求侧面A'ADD'底面ABCD所成二面角的正切值;(3)求四棱锥C-A'ADD'的体积.
在三角形ABC中,三内角满足A+C=2B,,求cos的值