如图,、分别表示一种白炽灯和一种节能灯的费用(费用=灯的售价+电费,单位:元)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样。(1)根据图象分别求出、的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)。
两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.请找出图2中的全等三角形,_____≌____并给予证明(说明:结论中不得含有未标识的字母);证明:DC⊥BE.
如图:在平面直角坐标系中A(-1,5),B(-1,0)C(-4,3).求出△ABC的面积。在下图中作出△ABC关于y轴对称图形△A1B1C1写出A1 、B1 、C1的坐标
『问题情境』勾股定理是一条古老的数学定理,它有多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行了证明.著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其它星球“人”进行第一次“谈话”的语言. 『定理表述』请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述). 『尝试证明』以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理. 『知识拓展』利用图2中的直角梯形,我们可以证明<.其证明步骤如下: ∵BC=a+b,AD=, 又在直角梯形ABCD中,BCAD(填大小关系), 即. ∴<.
观察与发现: 在一次数学课堂上,老师把三角形纸片ABC(AB>AC)沿过A点的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).有同学说此时的△AEF是等腰三角形,你同意吗?请说明理由.实践与运用 将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点处,折痕为EG(如图④);再展平纸片(如图⑤).试问:图⑤中∠的大小是多少?(直接回答,不用说明理由).
描述证明:海宝在研究数学问题时发现了一个有趣的现象:请你用数学表达式写出海宝发现的这个有趣的现象;请你证明海宝发现的这个有趣现象.