如图,小刚同学在綦江南州广场上观测新华书店楼房墙上的电子屏幕CD,点A是小刚的眼睛,测得屏幕下端D处的仰角为30°,然后他正对屏幕方向前进了6米到达B处,又测得该屏幕上端C处的仰角为45°,延长AB与楼房垂直相交于点E,测得BE=21米,请你帮小刚求出该屏幕上端与下端之间的距离CD.(结果保留根号)
如图,铁路上A、B两点相距25km,C、D为两村庄,且DA⊥AB于A,CB⊥AB于B,若DA=10km,CB=15km,现在要在AB之间建一个中转站E,使C、D两村到E站的距离相等。求E应建在离A多远的地方?
化简求值: ①简代数式,并从-1≤x≤2中选择一个你喜欢的整数代入,求出代数式的值; ②已知,求有理数A、B的值。
计算或解方程:①;②.
某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2分钟内可以通过560名学生;当同时开启一个正门和一个侧门时,4分钟内可以通过800名学生. (1)求平均每分钟一个正门和一个侧门各可以通过多少名学生? (2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5分钟内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.
如图,在△ABC中,∠ABC、∠ACB的平分线交于O点. ① 当∠A=300时,∠BOC=105°=; ② 当∠A=400时, ∠BOC=110°= ③ 当∠A=500时, ∠BOC=115°= 当∠A=n°(n为已知数)时,猜测∠BOC=,并用所学的三角形的有关知识说明理由.