我们经常会采用不同方法对某物体进行测量,请测量下列灯杆 A B 的长.
(1)如图(1)所示,将一个测角仪放置在距离灯杆 A B 底部 a 米的点 D 处,测角仪高为 b 米,从 C 点测得 A 点的仰角为 α ,求灯杆 A B 的高度.(用含 a , b , α 的代数式表示)
(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为 2 米的木杆 C G 放在灯杆 A B 前,测得其影长 C H 为 1 米,再将木杆沿着 B C 方向移动 1 . 8 米至 D E 的位置,此时测得其影长 D F 为 3 米,求灯杆 A B 的高度.
永嘉县绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我县收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为元,试写出与之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
如图,已知一次函数的图象与反比例函数的图象的两个交点是A(-2,-4),C(4,n),与y轴交于点B,与x轴交于点D.(1)求反比例函数和一次函数的解析式;(2)连结OA,OC,求△AOC的面积.
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).
某校九年级学生利用课外活动时间积极参加体育训练,每位同学从跳绳、篮球、跳远、实心球等项目中选一项进行训练.王强就本班同学“体育训练项目选择情况”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有 名学生;(2)补全条形统计图;(3)在扇形统计图中,“篮球”部分所对应的圆心角度数为 °;(4)若全校有360名学生,请计算出全校“其他”部分的学生人数.