某校九年级学生利用课外活动时间积极参加体育训练,每位同学从跳绳、篮球、跳远、实心球等项目中选一项进行训练.王强就本班同学“体育训练项目选择情况”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有 名学生;(2)补全条形统计图;(3)在扇形统计图中,“篮球”部分所对应的圆心角度数为 °;(4)若全校有360名学生,请计算出全校“其他”部分的学生人数.
如图,AD∥BC,EF∥AD,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.
如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和点D,在直线CD上有一点P.(1)如果P点在C、D之间运动,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由;(2)若点P在C、D两点的外侧运动(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何.
实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=________°,∠3=________°.(2)在(1)中,若∠1=55°,则∠3=________°;若∠1=40°,则∠3=________°.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=________°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?
已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有________(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”.已知:如图,________.求证:________________________.证明:________________________.
如图,AB∥CD,EB∥DF,试说明∠1=∠2.