如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).
如图,为⊙的直径,与⊙相切于点,与⊙相切于点,点为延长线上一点,且CE=CB. (1)求证:为⊙的切线; (2)若,求线段BC的长.
小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:. (1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润. (2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?
在一个口袋中装有4个完成相同的小球,把它们分别标号1、2、3、4,小明从中随机地摸出一个球. (1)直接写出小明摸出的球标号为4的概率; (2)若小明摸到的球不放回,记小明摸出球的标号为,然后由小强再随机摸出一个球记为.小明和小强在此基础上共同协商一个游戏规则:当>时,小明获胜,否则小强获胜.请问他们制定的游戏规则公平吗?请用树状图或列表法说明理由.
如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2) (1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1, (2)写出A1,C1的坐标. (3)求点A旋转到A1所经过的路线长.
已知二次函数. (1)在给定的直角坐标系中,画出这个函数的图象; (2)根据图象,写出当y<0时,x的取值范围; (3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.