已知函数.(Ⅰ)求的最大值及最小值;(Ⅱ)若又给条件q:“|f(x)-m|<2”且P是q的充分条件,求实数m的取值范围
如图所示,直线l:y=x+b与抛物线C:x2=4y相切于点A.(1)求实数b的值;(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
如图所示,在直角坐标系xOy中,点P到抛物线C:y2=2px(p>0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.(1)求p,t的值;(2)求△ABP面积的最大值.
如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
已知抛物线C顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.
如图所示,抛物线C1:x2=4y,C2:x2=-2py(p>0).点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O).当x0=1-时,切线MA的斜率为-.(1)求p的值;(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).