已知抛物线C顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.
、设函数f(x) = x2+bln(x+1), (1)若对定义域的任意x,都有f(x)≥f(1)成立,求实数b的值; (2)若函数f(x)在定义域上是单调函数,求实数b的取值范围; (3)若b=-1,证明对任意的正整数n,不等式成立;
(12分)已知椭圆,直线l与椭圆交于A、B两点,M是线段AB的中点,连接OM并延长交椭圆于点C.直线AB与直线OM的斜率分别为k、m,且. (Ⅰ)求的值; (Ⅱ)若直线AB经过椭圆的右焦点F,问:对于任意给定的不等于零的实数k,是否存在a∈,使得四边形OACB是平行四边形,请证明你的结论;
已知四棱锥中,平面,底面是直角梯形,为的重心,为的中点,在上,且; (1)求证:; (2)当二面角的正切值为多少时,平面; (3)在(2)的条件下,求直线与平面所成角 的正弦值;
已知数列中,,且当时,函数 取得极值; (Ⅰ)若,证明数列为等差数列; (Ⅱ)设数列的前项和为,求 .
已知斜三棱柱在底面上的射影恰为的中点又知; (1)求证:平面; (2)求到平面的距离; (3)求二面角的余弦值;